Category Archives: pedagogy

The Product of Two Lines

I can’t remember when I realized that quadratics with real zeros were the product of two lines. It may have been
this introductory assessment that started me thinking hey, that’s cool, the line goes through the zero. And hey, even cooler, the other one will, too.

And for the first time, I began to understand that “factor” is possible to explain visually as well as algebraically.

Take, for example, f(x)=(x+3) and g(x)=(x-5). Graph the lines and mark the x-and y-intercepts:


Can’t you see the outlines of the parabola? This is a great visual cue for many students.

By this time, I’ve introduced function addition. From there, I just point out that if we can add the outputs of linear functions, we can multiply them.

We can just multiply the y-intercepts together first. One’s positive and one’s negative, so the y-intercept will be [wait for the response. This activity is designed specifically to get low ability kids thinking about what they can see, right in front of their eyes. So make the strugglers see it. Wait until they see it.]

Then onto the x-intercepts, where the output of one of the lines is zero. And zero multiplied by anything is zero.

Again, I always stop around here and make them see it. All lines have an x-intercept. If you’re multiplying two lines together, each line has an x-intercept. So the product of two different lines will have two different x-intercepts–unless one line is a multiple of the other (eg. x+3 and 2x+6). Each of those x-intercepts will multiply with the other output and result in a zero.

So take a minute before we go on, I always say, and think about what that means. Two different lines will have two different x-intercepts, which mean that their product will always have two points at which the product is zero.

This doesn’t mean that all parabolas have two zeros, I usually say at this point, because some if not all the kids see where this lesson is going. But the product of two different lines will always have two different zeros.

Then we look at the two lines and think about general areas and multiplication properties. On the left, both the lines are in negative territory, and a negative times a negative is a positive. Then, the line x+3 “hits” the x-axis and zero at -3, and from that zer on, the output values are positive. So from x=-3 to the zero for x-5, one of the lines has a positive output and one has a negative. I usually move an image from Desmos to my smartboard to mark all this up:


The purpose, again, is to get kids to understand that a quadratic shape isn’t just some random thing. Thinking of it as  a product of two lines allows them to realize the action is predictable, following rules of math they already know.

Then we go back to Desmos and plot points that are products of the two lines.


Bam! There’s the turnaround point, I say. What’s that called, in a parabola? and wait for “vertex”.

When I first introduced this idea, we’d do one or two product examples on the board and then they’d complete this worksheet:


The kids  plot the lines, mark the zeros and y-intercept based on the linear values, then find the outputs of the two individual lines and plot points, looking for the “turnaround”.

After a day or so of that, I’d talk about a parabola, which is sometimes, but not always, the product of two lines. Introduce the key points, etc. I think this would be perfect for algebra one. You could then move on to the parabolas that are the product of one line (a square) or the parabolas that don’t cross the x-intercept at all. Hey, how’s that work ?What kinds of lines are those? and so on.

That’s the basic approach as I developed it two or three years ago. Today, I would use it as just as describe above, but in algebra one, not algebra two. As written,I can’t use it anymore for my algebra two class, and therein lies a tale that validates what I first wrote three years ago, that by “dumbing things down”, I can slowly increase the breadth and depth of the curriculum while still keeping it accessible for all students.

These days, my class starts with a functions unit, covering function definition, notation, transformations, and basic parent functions (line, parabola, radical, reciprocal, absolute value).

So now, the “product of two lines” is no longer a new shape, but a familiar one. At this point, all the kids are at least somewhat familiar with f(x)=a(x-h)2+k, so even if they’ve forgotten the factored form of the quadratic, they recognize the parabola. And even better, they know how to describe it!

So when the shape emerges, the students can describe the parabola in vertex form. Up to now, a parabola has been the parent function f(x)=xtransformed by vertical and horizontal shifts and stretches. They know, then, that the product of f(x)=x+3 and g(x)=x-5 can also be described as h(x)=(x-1)2-16.

Since they already know that a parabola’s points are mirrored around a line of symmetry, most of them quickly connect this knowledge and realize that the line of symmetry will always be smack dab in between the two lines, and that they just need to find the line visually, plug it into the two lines, and that’s the vertex. (something like this).

For most of the kids, therefore, the explanatory worksheet above isn’t necessary. They’re ready to start graphing parabolas in factored form. Some students struggle with the connection, though, and I have this as a backup.

This opens up the whole topic into a series of questions so natural that even the most determined don’t give a damn student will be willing to temporarily engage in mulling them over.

For example, it’s an easy thing to transform a parabola to have no x-intercepts. But clearly, such a parabola can’t be the product of two lines. Hmm. Hold that thought.

Or I return to the idea of a factor or factoring, the process of converting from a sum to a product. If two lines are multiplied together, then each line is a factor of the quadratic. Does that mean that a quadratic with no zeros has no factors? Or is there some other way of looking at it? This will all be useful memories and connections when we move onto factoring, quadratic formula, and complex numbers.

Later, I can ask interested students to sketch (not graph) y=x(x-7)(x+4) and now they see it as a case of multiplying three lines together, where it’s going to be negative, positive, what the y-intercept will be, and so on.


At some point, I mention that we’re working exclusively with lines that have a slope of positive one, and that changing the slope will complicate (but not alter) the math. Although I’m not a big fan of horizontal stretch outside trigonometry, so I always tell the kids to factor out x’s coefficient.

But recently, I’ve realized that the applications go far beyond polynomials, which is why I’m modifying my functions unit yet again. Consider these equations:


and realize that they can all be conceived as as “committing a function on a line”. In each case, graphing the line and then performing the function on each output value will result in the correct graph–and, more importantly, provide a link to key values of the resulting graph simply by considering the line.

Then there’s the real reason I developed this concept: it really helps kids get the zeros right. Any math teacher has been driven bonkers by the flipping zeros problem.

That is, a kid looks at y=(x+3)(x-5) and says the zeros are at 3 and -5. I understand this perfectly. In one sense, it’s entirely logical. But logical or not, it’s wrong. I have gone through approximately the EIGHT HUNDRED BILLION ways of explaining factors vs. zeros, and a depressing chunk of kids still screw it up.

But understanding the factors as lines gives the students a visual check. They will, naturally, forget to use it. But when I come across them getting it backwards, I can say “graph the lines” instead of “OH FOR GOD’S SAKE HOW MANY TIMES DO I HAVE TO TELL YOU!” which makes me feel better but understandably fills them with apprehension.

Statistics of Slaves

I vowed to spend May documenting all the curriculum I’ve built that’s kept me from writing much. But writing up lesson always takes forever, so I don’t know how much I’ll get done.

I’ve revamped a lot of my history course since I first taught it in the fall of 2014,  but this lesson has remained largely unchanged. I was looking for data, originally for a lecture, on the growth of slavery after Eli Whitney went south for a visit.  I found this report with a most gruesome title. After spending an hour or four attempting to capture the information, the horror of it, in a lecture, I suddenly realized how much better it would work to let the kids capture and represent the data themselves.

So after a brief lecture on cotton ginning, before and after, the students get the second page of the report, with the slave census data from 1790 through 1860. I always assign states by group–the eleven eventual confederate, the four border, and New Jersey for contrast, so usually each group gets four states.I then go through a brief review of Percent Change (“change in value over ORIGINAL value”, please) .

The assignment: For each state, calculate the percentage change each decade. Create Create a column graph showing the real change each decade, with the percentage change shown at the top of the column.

Once all four states in the groups are graphed, compare the growth rates.

The work so far has been done on whiteboards. Some of the whiteboards are small, for personal use. In other cases, the students did the work directly on my whiteboard walls.


Student work: Louisiana slavery growth, 1810-1860


Student work: Georgia slavery growth, 1790-1860


Student work: North Carolina slavery growth, 1810-1860


Student work: Alabama slavery growth, 1800-1860

Right about now, the students realize it’d be much easier to compare the growth rates if they’d used a common scale. Meanwhile, I’d found it difficult to group the states in such a way that each group got a representative sample of growth rates.

In prior years, I’d just lectured through some examples. But my class was much more manageable this year, and for some reason I realized Oh, hey. A teachable moment.

Their “statistics of slavery” handout was doublesided with graph paper. After everyone had finished their group of graphs, I took pictures of any small whiteboard graphs and displayed them on the smart board.

The assignment: quickly graph a line sketch representing the slavery trends in each states using CONSISTENT AXES.  x is year, with  1790 as x=0, or the y-intercept. y is the number of slaves, using 100K chunks through 500K.  No need to capture specific percentage growth, but the graph should reveal it. Something in between “graph every single point” and “just connect the beginning and end value.”

They did really well. A few of them forgot what I said about consistent axes–and mind you, I said this some EIGHTY TIMES but no, I’m not bitter.

SDAInconsistent SDAConsistent

Happily, most compilations got the full 5 of 5, just like the kid on the right (you can see where I corrected his first two).

So these graphs really allowed for informed discussion. (A couple students said “Wow, I actually get slope now.”)  The students were able to identify states that saw tremendous growth vs states with slow or static growth.

Why would states have different growth rates? I reminded them of the national ban on slave trade. Where would slaves come from? And so to the domestic slave trade, another cheerful topic. Unlike the Caribbean slave population, slaves in North America increased their population through natural increase. States that cultivated tobacco exhausted the soil and, as Thomas Jefferson put it  in a letter to Washington, “Manure does not enter into this [soil restoration], because we can buy  an acre of new land cheaper than we can manure an old one.”  People just up and moved, or bought more land, when the productivity dropped, and so the state populations declined. Virginia, Maryland, Kentucky, and North Carolina, tobacco states all, sold their excess slaves to the cotton states.

Interesting note 1: Washington and Madison were both passionately interested in saving Virginia’s soil. Washington abandoned tobacco early, converting to wheat and other less damaging crops. He consulted with many English experts on best practices in soil management. Madison tried to spearhead agricultural reform, but ran up against the southern dislike of centralization.

Interesting note 2: Virginia was a southern agricultural powerhouse despite its reduced tobacco crop, but its primary product was wheat, produced primarily by non-slaveholders in Shenandoah Valley, not tobacco or cotton produced by slaveholders. (Remember, Jimmy Stewart’s Anderson clan wasn’t interested in fighting for the Confederacy.)

Studying slavery reminds me of how seemingly obvious goodness probably wasn’t. So, for example, the south had constraints on manumission. Slaveholders couldn’t even free their slaves if they wanted to! Slave states didn’t want them setting a bad example! Except the constraints existed in no small part because slaveholders dumped older slaves incapable of work, putting indigent elderly slaves  with no family and no means of supporting themselves out on the street. Most of the manumission laws specified age and remuneration requirements, and most didn’t ban the emancipation of young, healthy slaves. So manumission constraints were at least in part about protecting elderly ex-slaves. But would a slave  rather be free, even if impoverished, than living as property?

Or the debate about ending the slave trade, during the Constitutional Convention, when George Mason gave a fine speech, accurately laying out the arguments against slavery–it discourages free labor, gives poor people a distaste for work done by slaves, turns slaveowning men into petty tyrants.  And then General Pinckney says, yo, fine talk from a Virginian, whose huge slave population instantly gets more valuable if we stop bringing in new ones.

What was Pinckney saying? The kids were mystified.

“Why would Virginia’s slaves get more valuable?” asked Eddie.

“Well, remember, this is banning slave trade. Not slavery. The Constitution didn’t give the federal government the right to ban slavery. So if slavery still existed, but no new slaves were being imported, the only slaves being created would be here in America.”

“Yeah, but I don’t see what makes them more valuable?” Jia was confused.

I paused. “Think about supply and demand. What would banning slave trade do to supply?”

“It would go….down.” Jun.

“Right. But demand isn’t decreasing. South Carolina, Kentucky, Georgia, they need slaves.

“They won’t be able to get anymore, though, because there won’t be any more slave trade,” offered Lee.

I stopped moving, wait until eyes are on me. (Teaching’s all about the performance.)

“There will be more slaves. The slaves themselves are having children, right?” I had barely gotten the words out when Lee figured it out, and he literally gasped.

“Yeah. It’s horrible. When the federal government banned slave trade, Virginia had more slaves than any other state. And thanks to lousy farming practices, its land wasn’t much good for tobacco. But as slaves met, married, and had children, lo! the Virginians had a ready made product for sale.” More kids got it and groaned.

“That’s where the phrase ‘sold me down the river’ came from. The phrase means to betray someone. But originally, it referred to a slave whose Virginia or Kentucky owner sold them to the cotton plantations in the deep south, Mississippi or Alabama.”

“So banning slave trade was done to increase the value of slaves?”

“I’m…pretty sure that’s not true. Remember that before the cotton gin came about, many of the founding fathers really did seem to think slavery would fade out, although they were fuzzy on how that would happen. But certainly, South Carolinians would be the ones to identify the market opportunity for another state.”


Another little data analysis activity, done earlier than the slavery stats above: read a series of Wikipedia entries to determine when Northern states freed their slaves, then create a timeline with color-coded data. “I” was banning importation, B meant banning slavery, (“g” meant ban was gradual).    All students had to color code the dates for importing bans and slavery bans. This student came up with the idea of an identifier for those states that gave blacks the vote, and those that restricted the right to vote, particularly after the fact.

Anyway, I wanted the students to realize that organizing data can lead to insights. In this case, the bulk of the Northern states banned importation and slavery in the same 20 year cluster. New York and New Jersey stand out in sharp contrast. Another oddness: Rhode Island banned slavery earlier than it did imports, for the obvious reason that Rhode Island was the epicenter of the slave trade.


I never liked all the stories about slaves quarters, and jumping the broom, and so on. Not that they aren’t interesting, but they don’t carry the weight of data, of seeing the huge numbers. Of realizing that manumission might be a way to dump non-productive workers, or that ending slave trade might be a business move to increase property value.

It’s too much like Anne Frank, or the Anne Frank that her loving dad created. Whenever I hear kids say “Oh, I identified with Anne sooooooo much!” I want to smack something. She lived in an attic for two years. She was then sent to a concentration camp where she held onto life for six month and then died of typhus, her body crawling with lice, just a month or so before liberation. Identifying with that level of suffering is well-nigh impossible, so spare me your virtue signaling, you teen drama queen. Hrmph.

Teaching Elections and the Electoral College

I couldn’t be more pleased with my US History class. First, the behavior issues are far less severe. I’m not sure why. Last time I taught, two years ago, each of my two classes had ridiculous behavior challenges of the sort I hadn’t dealt with since leaving Algebra 1 behind, thus triggering PTSD attacks and flashbacks. I had been prepared for that possibility, since US History, unlike AP, has a huge range of abilities, so I thought maybe the occasional unmanageable was just the price of admission.

But this year, I have no major challenges thus far, despite having a few unmotivated students. I don’t think I’ve dramatically improved my classroom management skills. At first, I just thought it was lucky chance, but a month in, it’s clear some students could produce the same challenge of years past. Yet they’re not nearly the hassle.

Tentatively, I’m thinking that my curriculum has helped. Rather than starting with early migration patterns, I kicked off with the 2016 election, and then went back to other elections. Competitions are naturally interesting.

I revamped the Question 1 unit from my original plans. Sectionalism will get moved to Question 2, mostly, with some in Question 3. Colonial history got moved to the immigration section, which I think is now Question 4. I only lightly touched on women getting the franchise–I’m going to put that in Question 3, paying the bills.

So what was left in Question 1:

  1. What is the electoral college?
  2. Why does the electoral college exist? Move from Articles to Constitution, small states vs large states, slavery representation.
  3. Political systems: America is a two party country. To oversimplify, one party has historically represented economic and business concerns, the other representing the rights and interests of the individual. (So, class, which party would you think championed abolition, the end of slavery? WRONG! But thanks for playing. They’re very interested in seeing how that came about.) So periodically, we’ll cover the political systems in effect at the time. This go-round, I covered Federalist-Democrat Republican split purely in terms of its existence, and Democrat-Republican split on tariffs. I’ll bring up additional details each cycle.
  4. Expansion of the franchise in the 19th century–specifically, white men without property and black men, as well as the failure to expand it to women.
  5. Elections: The elections with a EV/PV split, while perfectly legit constitutionally, have all been unusual. Two probably involved fraud or intimidation. I also threw in two early elections and Tyler’s assumption of the presidency.

This isn’t a government class, but we looked at Amendments 12-15.
Elections covered in this order:

  • I used the 2016 election to illustrate, which was a romping success and set the tone for the class.
  • After covering the Constitutional Compromises, we looked at the 1796 and 1800 elections–the first to show the unexpected consequences of “first place, second place” in light of the development of parties, the second to show the results of the 3/5ths Compromise.
  • The Corrupt Bargain of 1824
  • Tyler and the Vice Presidency: I included this because it seemed the right place. It wasn’t obvious that the Vice President would assume the presidential role until he said well, yeah, it is.
  • The End of Reconstruction, Compromise of 1877.
  • Election of 2000–out of order, because I had to take a day off for algebra 2 planning. So they watched (and mostly didn’t understand) Recount and then I finished up with that one.
  • Election of 1888

Methods: varied. I did more lecturing than last time, but still a lot of variety. So for the 1800 election, they read about the 3/5ths compromise and used census data to calculate how many extra votes were handed to Thomas Jefferson and what would have happened otherwise (thanks, Garry Wills!). For the Corrupt Bargain, they evaluated Henry Clay’s predictions and compared them to the actual electoral votes–and then compared actual electoral votes to the House vote. They did a lot of reading, usually in class-led situations (otherwise, they won’t do it), including longer pieces on Reconstruction and the Whisky Rebellion. I covered the 2000 election with a CNN documentary and a NY Times retrospective. Then I jigsawed the election of 1888, giving eight groups a different aspect to cover.

One of my favorite activities was on the 15th amendment–I created a group of profiles–black sharecropper, white female abolitionist in Ohio, white former slave owner, Hispanic Texan, married female ex-slave in Mississippi, etc. Then they considered how each person might feel about expanding the franchise. Would a black woman in Kentucky want women to get the franchise, or would that just increase the number of whites voting against issues that mattered to her? Would a black man in New York have different opinions about giving white women the vote than one in South Carolina? Why might a white woman in Kentucky have different opinions about abolition than a white woman in Ohio? And so on. We focused on the franchise not as a right, but rather as a pragmatic consideration–who’s going to vote for the things I want? Then we revisited the issue in 2000 and 2016 with the different views on voter identification.

Onwards. If you’re interested in the test questions, here you go.

I love building history tests with multiple answers–which, as I’ve mentioned, become True/False.

They did pretty well. This was a tough test. Highest score: 91%. Student performance showed a clear pattern: they knew some topics better than others, but the topics varied. Which means it wasn’t my teaching or the curriculum that determined the variance.

I figured out a way to weight half the results at 2 points, the other half at one point, giving each student more credit for the questions they knew well. This boosted everyone’s grade 10-20% over what a straight percentage calculation would have done (except for the high scorer, who I calculated as a percentage).

I also corrected the tests without actually writing on them, just putting the total correct at the bottom of each page. Students will be able to research the actual answers, write up a brief analysis, and turn in the corrected test. I won’t boost their first grade, but count it as a second 10-point test, which will give another boost.

There were two tests, of course. So in one, Matthew Quay helped Benjamin Harrison (true), whereas in this one below, Quay helped Cleveland (false).


I thought they’d do well on this one. Love the cartoon. But performance on this really lagged.


The Tyler question saw good performance overall, although some kids clearly had no clue and had blanked it out of memory. The tariff question was designed so that if a student didn’t remember Dem/Rep position, he was guaranteed to get hurt.


Worst overall performance. Almost all the information for this came from a reading, and clearly a lot of them didn’t retain and didn’t study.


No student got fewer than 8 of these correct. Great performance.


Generally good performance. This alerted me to students who simply weren’t paying any attention at all, since the questions covered topics throughout the unit.


Here’s something I struggle with on grading: what do I do with students who mark D, E, and F as True? Some of them clearly weren’t random guessers. So were they not sure and hedging their bets? Or did they think each one was true, and in that case, what are they failing to put together? Also sad: the number of students who got everything right EXCEPT they thought Clay wrote this in 1888. I’m doing a lesson on how to order events mentally–I don’t think kids always think this through.

In the “jigsaw” lesson, I needed an extra, simple topic for some weaker students and other than Hillary, no woman had been mentioned since the semester began. Frances Townsend was an interesting, off-beat topic to explore, plus she was relatively close to my students’ age when she became First Lady. But this quote was great, because it allowed me to test them on the election results as well.

Dig that Matthew Quay pickup! Hat tip and thanks to Richard Brookhiser, who put me onto the Tammany Hall connection. We covered different perspectives on what, exactly, Quay did. I really had no idea that the election of 1888 involved so much fraud. The AP US History test hasn’t covered it, at least in the years I prepped for it.


Really good performance on both, which surprised me because I taught this early in the semester–at the same time as the first question. I would have thought they’d remember people and results better than political parties and outcomes. Moreover, the Whiskey Rebellion was also a reading, something we only covered in a day. Weird.

It was a tough test, with relatively few clues and a great deal of reading. I also do brief essay questions, but we didn’t cover any issue in enough depth to warrant one. That will come later.

The Sum of a Parabola and a Line

For the past two years, my algebra students have determined that the product of two lines is a parabola, which instantly provides a visual of the solutions and the line of symmetry.  For the past year, they’ve determined that squaring a line is likewise a parabola, and can be moved up and down the line of symmetry, which is instantly visible as the line’s x-intercept. In this way, I have been able to build understanding from lines to quadratics without just saying hey, presto! here’s a parabola. I introduce them to adding and subtracting functions, and from there, it’s a reasonable step to multiplying functions.

Typically, I’ve moved from this to binomial multiplication, introducing the third form of the quadratic we deal with in early high-level math, the standard form. (The otherwise estimable Stewart refers to the vertex form as standard form, to which I say sir! you must reconsider, except, well, he’s dead.)

At some point in teaching this, you come to the “- b over 2a” (-b2a) issue. That is, teachers who like to build on existing knowledge towards each new step are a bit stuck when it comes to finding the vertex in a standard form equation.

(For non-mathies, the standard form of an equation is ax2+bx+c and the vertex form is a(x-h)2+k.  The parameters “a” “b”, and “c” are often just referred to by letter. Vertex form, we’re more likely to talk about the x and y values of the vertex, just like  when we talk about lines in the form y=mx+b, we don’t say “m” and “b” but rather “slope” and “y-intercept”. But teachers, at least, often talk about teaching different aspects of standard form operations by parameters: a>1, a<0, to say nothing of the quadratic formula.  So the way to find the vertex of a parabola in standard form is to take the “a” and “b” term and use the algorithm -b2a to find the line of symmetry,  which is the x-value of the vertex. Then”plug it in”, or evaluate, the x-value in the quadratic equation to find the y-value for the vertex.)

The only way I’ve found until now of building on existing knowledge to establish it is setting standard form equal to vertex form to establish that the “h” of vertex form is equal to the -b2a of standard form, something only the top kids really understand and don’t often enjoy. (they’re much more interested by pre-calc.)

Last year, I was putting together a worksheet on adding and subtracting lines, and on impulse I added a few that involved adding a simple parabola with its vertex at the origin with a line, mainly to add a bit of challenge for the top kids. I could see that adding a line and a parabola doesn’t provide the instant visual “hook” that multiplying or squaring lines does.


It’s obvious that the y-intercept of the sum will be the same as the y-intercept of the line. One can logically ascertain that in this particular case, the right side of the y-axis will only increase—adding two positives. The left side, therefore, as x approaches negative infinity is where the action is. But not too much action, since the parabola’s y is galloping towards positive infinity at a faster clip than the line’s is trotting towards negative infinity. So for a brief interval, the negative of the line will offset a bit of the positive of the parabola, but eventually the parabola’s growth will drown out the line’s decline.

All logically there to construe, but far less obvious at a glance.

This year, I decided to explore the relationship further, because deciphering standard form is where my weakest kids tend to check out. They’ve held on through binomial multiplication, to hang on, at least temporarily, to the linear term so that (x+3)2 doesn’t become x2 + 9. They’ve mastered factoring quadratics, to their shock. They understand how to graph parabolas in two forms. And suddenly this bizarre algorithm that has to be remembered, then calculated, then more calculations to find “y”, whatever that is. Can you say “cognitive load“, boys and girls? Before you know it, they’re using the quadratic formula for linear equations and other bad, bad things that happen when it’s all kerfluzzled in their noggins. That’s when you realize that paralysis isn’t the worst thing that can happen.

Could I break the process down into discrete steps that told a story?  Build on this notion of modifying the parent function ax2 with a line to shift it left or right? Find Raylene a new kidney now that her third husband discovered her affair with the yoga instructor and will no longer give her one of his?

My  first thought was to wonder if the slope of the line had any relationship to the graph’s location. My second thought was yes, you dweeb, “b” is the slope of the added line and b’s fingerprints are all over the line of symmetry. No, no, the other half of my brain, the English major, protested. I know that. But is there some way I can get the kids to think of “b” as a slope, or to link slope to the process in a meaningful way?

(This next part is probably incredibly obvious to actual mathematicians, but in my own defense I ran it by three teachers who actually studied advanced math, and they were like hey, wow. I didn’t know that.)

What information does standard form give? The y-intercept, or “c”. What information do we want that it doesn’t readily provide? The vertex. Factors would be nice, but they aren’t guaranteed. I always want the vertex. So if I graph the resulting parabola of the sum of, say,  x2 and 6x + 5, how might the slope be relevant?

The obvious relationship to wonder about first is the slope between the y-intercept, which I have, and the vertex, which I want. Start by finding the slope between these two points. And right at that point I realize hey,  by golly, that’s the rate of change(!).


The slope–that is, by golly, the rate of change(!)–is 3. The line of symmetry is -3. The vertex is exactly 9 units below the y-intercept, or the product of the rate of change and the line of symmetry. Heavens. That’s interesting. Does it always happen? Let’s assume for now a=1.

Sum Slope from y-int
to vertex
Line of
units from y-int to
y-value of vertex
x2 – 4x – 12 -2 x=2 -4 (2,-16)
x2 – 10x + 9 -5 x=5 -25 (5,-16)
x2 – 2x – 3 -1 x=1 -1 (-1,-4)
x2 +6x + 8 3 x=-3 -9 (-3,-1)

Hmm. So according to this, if I were trying to get the vertex for x2 +12x + 15, then I should assume that the slope–that is, by golly, the rate of change(!)– from the vertex to the y-intercept is 6. That would make the line of symmetry is x=-6. The y-value of the vertex should be 36 units down from 15, or -21. So the vertex should be at (-6,-21). And indeed it is. How about that?

So what happens if a is some other value than 1? I know the line of symmetry will change, of course, but what about the slope–that is, by golly, the rate of change(!). Is it affected by changes in a?

Sum Slope from y-int
to vertex
Line of
units from y-int to
y-value of vertex
2x2 – 8x – 5 -4 x=2 (-4/2) -8 (2,-3)
-x2 +2x + 4 1 x=1 (-1/-1) 1 (1,5)
-2x2 +14x +7 7 x=3.5 (-7/-2) 24.5 (49/2) (3.5,31.5)
4x2 +8x -15 4 x=-1 (-4/4) -4 (-1,-19)

Here’s a Desmos application that I created to demonstrate it.  The slope–that is, by golly, the rate of change(!)–from the vertex to the y-intercept is always half of the slope of the line added to the parabola–that is, half of “b”. The rate of change is not affected by the stretch factor, or a. The line of symmetry, however, is affected by the stretch, which makes sense once you realize that what we’re really calculating is the horizontal distance (the run) from the vertex to the y-axis. The stretch would affect how quickly the vertex is reached. So the vertex y-value is always going to be the rise for the number of iterations the run went through to get from the y-axis to the line of symmetry, or the rate of change multiplied by the line of symmetry x-value.


Mathematically, these are the exact steps used to complete the square but considerably less abstract. You’re finding the “run” to the line of symmetry and the “rise” up or down to the vertex.

Up to now, I’ve been describing my own discovery? How to explain this to the kids? As is always the case in a new lesson, I keep it pretty flexible and don’t overplan. I created a quick activity sheet.sumparabolalinehandout

The goal here was just to get things started. Notice the last question on the back: “Do you notice any patterns?” I was fully prepared for the answer to be “No”, which is good, because it was. We then developed the table similar to the first one above, and they quickly caught on to the pattern when a=1.

I was a bit worried about moving to other a values. However,  the class eventually grasped the basic relationship. The slope from the vertex to the y-intercept was always related to the slope of the line added  to the parabola. But the line of symmetry, the distance from the y-axis, would be influenced by the stretch. This made intuitive sense to most of the kids. They certainly screwed up negatives now and again, but who doesn’t.

Good math thinking throughout. I heard a lot of discussions, saw graphs where kids were clearly thinking through the spatial relationship. Many kids realized that when a=1, a negative b means the slope of the line from the y-intercept to the vertex is also negative, which means the vertex must be to the right of the y-intercept. A positive “b” means the slope is positive which means the vertex is to the left. Then they realize that the sign of “a” will flip that relationship around. he students start to see the “b” value as an indicator. That is, by making bx+c its own unit, they realize how important the slope of the added line is, and how essential it is to the end result.

All that and, you might have noticed, they get an early peek at rate of change concepts.

Definitely no worse than my usual -b2a  lesson and the weak kids did much, much better. This was just the first run; the next time I teach algebra 2 I’ll get more ambitious.

So I can now build on students’ existing knowledge to decipher and graph a standard form equation rather than just provide an algorithm or go through the algebra. On the other hand, the last tether holding my quadratics unit to the earth of typical algebra 2 practice has been severed; it’s now wandering around in the stratosphere.

I don’t mean the basics aren’t covered. I teach binomial multiplication, factoring, projectile motion, the quadratic formula, complex numbers, and so on. But the framework differs considerably from my colleagues’.

But if anyone is thinking that I’m dumbing this down, recall that my students are learning that functions can be combined, added, subtracted, multiplied. They’re learning that rate of change is linked directly to the slope of the line added to  the parabola, and that the original parabola’s stretch doesn’t influence the rate of change–but does impact the line of symmetry. And the weaker kids aren’t getting lost in algorithms that have no meaning.

I could argue about this, but maybe another day. For now, I’m interested in what to call this method, and who else is using it.

Teaching US History in the Trump Era

So the first semester is coming to an end, with its three different preps and an ELL class. Up next: three trig classes. Normally, I kvetch at the idea of teaching three classes in a row. By time three, I’m improvising just to relieve the sense of deja vu (which isn’t as bad as it sounds, since it usually leads to insights into the next day). But I’m unlikely to complain anyway, since this semester I came perilously close to burning out. I managed my Thanksgiving break effectively, getting in sleep, grading, gardening, and holidaying in equal measure. I welcomed Christmas in the normal fashion, without the sense of needing it as I did going into Thanksgiving. So apart from the tedium of grading a hundred plus tests at a time (as opposed to 35 each time now), there’ll be no complaints from this quarter.

And! I’m teaching US History again. Whoo and hoo. I never thought I’d see another year when I’d use all my credentials.

When I last taught it, the big challenge was balancing content. I like teaching history in a semi-linear fashion, but there’s always something interesting in the past to bring up, and I forget all about the time. (Ha, ha.) I forgave my failings because we don’t have state tests and all evidence shows kids never remember the details anyway. You know how all the curriculum folk like E.D. Hirsch, Robert Pondiscio, Dan Willingham all say “Teachers today don’t teach knowledge?” They’re goofy. We do. Trust me. We do. But they tend not to remember. That’s another story.

Anyway. I wanted to get past World War II while still teaching my favorite topics of the past, and have been mulling possibilities in my copious spare time without much progress until The Election Happened. That, coupled with some breathing room over Thanksgiving, gave me a framework.

Five Questions:

  1. Wait–the Candidate With the Most Votes Didn’t Win?
  2. Why Black Lives Matter?
  3. What does “American” Mean?
  4. How Will You Contribute to the US Economy–aka, How Will You Pay Your Bills?
  5. What do Fidel and Putin Have to Do With Us?

I’ll continue to wordsmith the questions, but I do want them to be instantly relevant to a high school junior.

Question One

Main Idea: The Electoral College plays an important role in balancing regional tensions, a role that’s remained constant even as we’ve dramatically expanded the voting pool.
I.   History of colonial development
II. Brief (I said BRIEF, Ed!) history of Revolutionary Era
III.Constitutional Convention
IV. Rise of sectionalism and the role the electoral college played in balancing power (Hartford Convention, Missouri Compromise, Nullification Crisis, Compromise of 1850).
V. Expansion of franchise: all property holders, all men (technically, all women (technically), all citizens (really).
VI. Popular Vote/EC Splits a) Jefferson-Adams (Jefferson only won EV because of slave headcount) b) The Corrupt Bargain; c) Compromise of 1876; d) Cleveland-Harrison e) Gore-Bush f) Trump-Clinton, which I’ll probably defer until later.

Question Two:
Main Idea: “Black Lives” matter because the US violated its fundamental values to achieve and maintain unity, and our African American citizens paid the price.

I.   Development of slavery (I go way back to Portugal and kidnapping, the Papal Bull and so on)
II.  The evitable roots of American slavery and its development: Jamestown, South Carolina, Bacon’s Rebellion.
II.  The rise of Cotton
III. Deeper look at sectionalism from slavery standpoint: rise of abolition, range of reasons for opposition, free black role in movement, etc.
IV.  Civil War, Reconstruction
V.    Rise of black intellectual debate (Booker T, WEB, Garvey, MLK,).
VI.  Post-Civil Rights era–I see history past the Voting Rights as rather gloomy. Maybe examine riots in 60s/70s and compare to today?

Question Three:

Main Idea: From the first Beringian wanderers to the desperate migrants hoping for a miracle in Turbo, everyone wants to find a home here. At some point, the United States imposed its will on the process. What does that mean to the world? What does the expanding definition of “American” mean to its citizens?

I.    Early Americans and Corn Cultivation (one of my favorite topics!)
II.  Age of Exploration (again, brief, Ed!)
III.  Immigration Waves and Westward Expansion
IV.   Restriction: 1888, 1924
V.   Expansion: 1965
VI.  I’m still figuring out how to organize this.

Question Four
Main Idea: The United States’ economy has changed in many ways over the years. Many people think Trump’s victory was due in part to regional dissatisfaction with those changes. How do the transformations in the past help us understand the future–or do they?

This is a big section and I’ll have to chop it down. But it’s my favorite, so I’m listing everything to see if I can find any synergies to improve coverage.

I.    Colonial Mercantilism
II.   Hamilton vs. Jefferson (again, a favorite of mine)
III.  Rise of Industry (Eli Whitney! McCormack! Industrial espionage! and so on)
IV.  The “Worker” as opposed to the farmer or merchant (Jackson Kills the Bank will make an appearance)
V.    The Rise of Mechanization and the Industrial Era (immigration will show up again here)
VII. America as Industry Giant (Ford, impact of WWI/WWII on our dominance, the automated cotton picker & Great Migration, etc), including the rise of unions (thanks to Wagner Act)
VIII. Early Computing through the WWW and Information Age
IX.   Globalization and Automation, coupled with the fall of unions.
X.   Growing–and reducing–the work force

Question Five

Main Idea: How has the United States interacted with its neighbors near and far?

As I’ve written before, I’m a big fan of Walter Russell Mead’s Special Providence, and will use that as a sort of syllabus to outline key events in American foreign policy: neutrality, acquisitions, native American screwovers, world wars, and cold wars. I don’t have this one fleshed out, but the topic will definitely include the important international alliances that occurred before and during the Revolution, Founding Fathers, John Quincy Adams (you can get a hint of my thoughts here ). Then I’ll pick key events of interest in the 19th century, limiting my scope. Again, some talk of America’s position post-WWI/WWII, but bulk of time will be spent on Cold War and beyond, is my hope.


I have a lot of these lessons done already. I didn’t like to lecture the last time I did the class because it was too tempting to just lecture the entire time. But with this structure, I think I’ll be able to give lectures as well as do a lot of readings and analysis. That’s the hope, anyway.



Realizing Radians: Teaching as Stagecraft

Teaching Objective: Introduce radian as a unit of angle measure that corresponds to the number of radians in the length of the arc that the angle “subtends” (cuts off? intersects?).  Put another way: One radian is the measure of an angle that subtends an arc the length of the circle’s radius.  Put still another way, with pictures:

How do you  engage understanding and interest, given this rather dry fact?  There’s no one answer. But in this particular case, I use stagecraft and misdirection.

I start by walking around a small circle.

“How far did I walk?”

“360 degrees.”

“Yeah, that won’t work.” I walk around a group of desks. “How far did I walk?”

“360 degrees.”

“Really? I walked the same distance both times?”

“No!” from the class.

“So what’s the difference?”

It takes a minute or so for someone to mention radius.

“Hey, there you go. Why does the radius matter?”

That’s always an interesting pause as the kids take into account something they’ve known forever, but never genuinely thought about before–the distance around a circle is determined by the radius.

“Yeah. Of course, we knew that, right? What’s that word for the distance around a circle?”


“Yes. And how do you find the circumference of a circle?” There’s always a pause, here. “OK, let me tell you for the fiftieth time: know the difference between area and circumference formulas!”

“2Πr” someone offers tentatively.  I put it up:


“So the circumference is the difference between this small circle” and I walk it again “and this biiiiigg circle around these desks here.” Nods. “And the difference in circumference comes down to radius.”


“Look at the equation. 2 Π is 2 Π. So the only difference is radius. The difference in these two circles I walked is that one has a bigger radius.”

“So the real question is, how does the radius play into the circumference?”

“Well,” it’s always one of the better math students, here: “The bigger the radius is, the farther away from the center, right?”

“So then…you have to walk more around…more to walk around,” some other student will finish, or I’ll ask someone to explain what that means.

“Right. But how does that actually work? Can we know exactly how much bigger a circle is if it has a bigger radius?”

“A circle with a radius of 2 has a circumference of  4Π. A circle with a radius of 4 has a radius of 8 Π. So it’s bigger.” again, I can prompt if needed, but my class is such that the stronger students will speak their thoughts aloud. I allow it here, because they can never see where I’m going. See below for what happens if they start with spoiler alerts.

“Sure. But what’s that mean?”


I pass out pairs of circles, cut from simple construction paper, of varying sizes, although each pair has the same radius.

“You’re going to find out exactly how many radius lengths are in a circle’s circumference using the two circles. Don’t mix and match. Don’t write annoyingly obscene things on the circles.”

“How about obscene things that aren’t annoying?”

“If you can think of charmingly obscene comments, imagine yourself repeating them to the principal or your parents, and refrain from writing them, too. Now. You will use one of these circles as a ruler. All you have to do is create a radius ruler. Then you’ll use that ruler to tell me how many times the radius goes around the circumference.”

“Use one of the circles as a ruler?”

“You figure it out.”

And they do. Most of them figure it out independently; a few covertly imitate a nearby group that got it. Folding up one of the circles into fourths (or 8ths) exposes the radius.


Folding up one circle exposes the radius.

It takes most of them a bit more time to figure out how to use the radius as a ruler, and sometimes I noodge them. It’s so low-tech!


Curl the folded circle around the edge of the measured circle. 

But within ten to fifteen minutes everyone has painstakingly used the “radius ruler” to mark off the number of radius lengths around the circumference, and then I go back up front.


“Okay. So how many times did the radius fit into the circumference?”

Various choruses of “Over six” come back, but invariably, someone says something like “Six with and a little bit left over.”

“Hey, I like that. Six and a little bit. Everyone agreed?” Yesses come back. “So did everyone get something that looks like this?”


“Huh. And did it matter what size the circle was? Jody, you had the big two, right? Samir, the tiny ones? Same difference? Six and a little bit?”

“So no matter the circle size, it appears, the radius goes into the circumference six times, with a little bit left over.”

No one has any clue where I’m going, usually, but they’re interested.

“‘Goes into’ is a familiar term, isn’t it? I mean, if I say I wonder how many times 2 goes into 6, what am I actually asking?”

Pause, as the import registers, then “Six divided by two.”

“Yeah, it’s a division question! So when I ask how many times the radius goes into the circumference, I’m actually asking…..” The pause is a fun thing. Most beginning teachers dream of using it, but then get fearful when no one answers. No. Be fearless. Wait longer. And, if you need it:

“Oh, come on. You all just said it. How many times does 2 go into 6 is 6 divided by 2. So how many times the radius goes into the circumference is…”

and this time you’ll get it: “Circumference divided by the radius.”

“Yeah–and that’s interesting, isn’t it? It applies to the original formula, too.”


“Cancel  out the radius.” the class is still mystified, usually, but they see the math.

“Right. The radius is a factor in both the numerator and denominator, so they can be eliminated. This leaves an equation that looks like this.”


“The circumference divided by the radius is 2Π. Well. That’s good to know. Does everyone follow the math? Everyone get what we did? You all manually measured the circumference in terms of radius length–which is the same as division–and learned that the radius goes into the circumference a little bit over six times. Meanwhile, we’re looking at the algebra, where it appears that the circumference divided by the radius is 2Π.”

(Note: I have never had the experience where a bright kid figures it out at this point. If I did, I would kill him daid, visually speaking, with a look of daggers. YOU DO NOT SPOIL MY APPLAUSE LINE. It’s important. Then go to him or her later and say, “thanks for keeping it secret.” Or give kudos after the fact, “Aman figured it out early, just two seconds before figuring out I’d kill him if he spoke up.” Bright kids learn early, in my class, to speak to me personally about their great observations and not interrupt my stagecraft.)

And then, almost as an aside: “What is Π, again?” I always ask it that way, never “what’s the value of Π” because the stronger kids, again, will answer reflexively with the correct value and they aren’t the main audience yet. So the stronger kids will start talking yap about circles, and I will always call then on a weaker kid, up front.

“So, Alberto, you know those insane posters going around all the math teachers’ walls? With all the numbers?”

“Oh, yeah. That’s Π, right? 3.14.”

“Right. So Π is 3.14 blah blah blah. And we multiply it by two.”


That’s when I start to get the gasps and “Oh, MAN!” “You’re kidding!”

“….so 3.14 blah blah times 2 is 6.28 or…..”

“SIX AND A LITTLE BIT!” the class always shouts with joy and comprehension. And on good days, I get applause, too, from the stronger kids who realized I misdirected them long enough to get a deeper appreciation of the math, not just “the answer”.


So a traditionalist would just explain it, maybe with power point. I don’t want to fault that, but I have a bunch of students who would simply not pay any attention. They’ll take the F. I either have to figure out a way to feed them the math in a way they’ll remember, or fail more kids than I’m comfortable failing.

A discovery-oriented teacher would probably turn it into a crafts project, complete with pipe cleaners and magic markers. I don’t want to fault that, but you always get the obsessive artists who focus on making a beautiful picture and don’t care about the math. Besides, it takes forever. This little activity has to be 15-20 minutes, tops. Remember, there’s still a lot to explain. Radians are the unit measure that allow us to talk about circles in terms akin to similarity in polygons–and that’s just the start, of course. We have to talk about conversion, about the power that radians gives us in terms of thinking of percentage of the entire circle–and then actual practice. I don’t have time for a damn pipe-cleaning activity.

As I’ve written before somewhere between open-ended, squishy discovery and straight discussion lecture lies a lot of ground for productive, memorable teaching. In my  opinion, good teachers don’t just transmit information, but create learning events, moments that all students remember and can use as hooks for further memories of learning. In this case, I want them to sneak around the back end to realize that  Π is a concrete reality, something that can actually be counted, if not exactly.


Teaching as stagecraft. All the best teachers use it–even pure lecture artists who do it with the power of their words (and an appropriate audience).  Many idealistic teachers begin with fond delusions of an enthralled class listening as they explain math in terms that their other soulless, uncaring teachers just listlessly put up on the board. When those fantasies are ruthlessly dashed, they often have no plan B. My god, it turns out that the kids really don’t find math interesting! Who do I blame, myself or them?

I never had the delusions. I always ask my kids one simple question: is your life better off if you pass math, or if you fail?  Stick with me, and you’ll pass. For many, that’s a soulless promise. To me, that’s where the fun starts. How do you get them interested? How do you create those moments? How do you engage kids who don’t care?

It’s not enough. It’s never enough.

But it’s a good way to start.

Great Moments in Teaching: The Third Dimension (part I)

“How many other dimensions are there?”

“Well, four, according to Einstein, and five according to Madeline L’Engle, if you’ve read A Wrinkle in Time.”

“I have!” Priya’s hand shot up. “It’s a tesseract!”

I was impressed. Not many girls read that classic anymore. “But we’re going to stick to three dimensions.”

“Isn’t real life three dimensions?” asked Tess.

“Yes. But if you think of it, up to now, we’ve only been working in two. We’ve spent a lot of time in the coordinate plane thinking about lines. In two dimensions, a line can be formed by any two points on the coordinate plane. We’ve been working with systems of equations, which you think of as algebraic representations of the intersections of two lines. We can also define distance in the coordinate plane, using the Pythagorean theorem. All in two dimensions.”

Now, no mocking my terrible art skills” and I put up this sketch, the drawing of which occurred to me the night before, and was the impetus for the lesson.


Everyone gasped, as they had in the previous two classes. My instincts about that clunky little sketch proved out, beautifully. No clue why.

“Holy sh**,” groaned Dwayne, the good ol’ country boy who offered to paint my ancient Honda if I gave him a passing grade. He doesn’t like math. He’s loud and foul and annoying and never shuts up. That last sentence is a pretty good description of me, so I’m very fond of him. “What the hell is that? Get it off the screen, it hurts my eyes.”

“That is awesome,” offered Talika, a senior I had last year for history. “How long did it take you to draw that?”

“What is that white stuff spread everywhere? Did someone get all excited?” asked Dylan, a sophomore whose mother once emailed me about his grade, giving me the pleasure of embarrassing him greatly by describing his behavior.

“Ask your mother,” I replied, to a gratifying “ooooo, BURN!” from the class, who knew very well what had happened.

“How did you draw that?” asked Teddy, curious. “It’s not ordinary graph paper, right?”

“No, it’s isometric paper, which allows you to draw three dimensional images. So…”

“This is really stupid,” said Dwayne. “I’ve taken algebra 2 three times and no one’s ever taught me this.”

“Best I can tell, no one’s ever taught you anything , and not just not in algebra 2,” I replied, earning another “Oooooo” from the class and an appreciative chuckle from Dwayne.

“It’s weird, though, because in two dimensions, you start in the middle,” offered Manual, who was consulting with Prabh, another bright kid who rarely speaks.

“That’s a good point! For example, if we were going to plot seating positions in this room in two dimensions, we’d start with Tanya,” I said, moving to the class center and indicating Tanya, who looked a bit confused. “So Tanya would be the origin, and Wendell would be (1,0), while Dylan would be (1,-1).”

“I’m not negative!” Dylan said instantly, talking over my attempt to continue. “You’re saying I’m negative. You don’t like me.”

“Hard to blame anyone for that,” said Wendell who is considerably more, er, urban than Teddy, with pants down to his knees and a pick that spends some time in his hair. Despite his occasional class naps, he maintains a solid C+, and could effortlessly manage a B if I could just keep him awake. “S’easy, dude. It’s like one of those x y things, like we’re all dots on the graph.”

“You’re one down and one to the right of me,” pointed out Tanya.

Dylan was interested in spite of himself. “So Talika’s, like, (0, 4)?”

“Yes,” several students chorused.

“Then I’m negative 8.” said Dwayne, unhappy with any conversation that doesn’t have him at the center.

“More like….(-2,2), yeah,” says Cal.

Ben speaks up, “But how come Tanya’s at the center for mapping the room’s people, but your sketch is, like, from the left?”

“Or right?” Sophie, from the back.

“Or is it….outside?” asks Manuel.

“Yes, it’s kind of like you’re standing on a desk in Ms. Chan’s room and the walls are transparent,” says Ben, more certainly. Ben is repeating Algebra 2 after having taken it with me last semester. Very bright kid who clowned incessantly, confident in his ability to learn without really trying, only to learn that Algebra 2 was different from other nights, and he wasn’t finding the afikoman. I advised him to repeat. The big sophomore not only agreed, but specifically asked to repeat with me. His attitude and behavior is much improved. I ran into him while walking across the courtyard a few weeks earlier, and he said “I just realized I was Dwayne and Dylan combined last semester, and it’s so embarrassing. I’m really sorry.”

“I’m not enough of an artist to know if I could have drawn this any other way. It just seemed intuitive to me last night, when I came up with the idea.”

“See, I knew it,” trumpeted Dwayne. “You’re making this up!”

“Yeah, I know this isn’t in any algebra book” said Wendy, a sophomore whose excellence in math is often hard to discern beneath her complaints. “This is just some weird thing you’re doing to make us think about math.”

I picked up at random one of the four algebra 2 books sitting on my desk (I’m on the textbook committee) and walked over to Wendy’s desk, opening it to the “Three Dimensional Systems” chapter. She looked, and said “Ok, maybe not.”

“So just as we can plot points in two dimensions, we can plot points in three. Take Aditya here,” my TA, who was watching the circus in amusement. “How could we represent him as a point on my graph?”

Teddy said instantly, “Yeah, I’ve been working that out. I can’t figure out which the new one is, and what do we call it? Where’s x, where’s y?”

Sanjaya said, “I think the part along the ground is x. Like if you go along the bookshelf?”

“Like this?”


“Yes,” Sanjaya said, confidently. “That has to be x. So you could count to Aditya, right?”

“Count which way?”

“The bottom!” “The bottom line!” “the bottom..axis, thing. The X!” comes a chorus of voices.

I start counting, and while I do, Sophie objected. “But hang on. I still don’t see what the new thing, direction, is. What’s the third?”

“Up! said Calvin, who rarely participates and often tunes out so far he can’t keep up. But he was watching this with interest. “You know how the class map with Tanya was going north and south and east and west. But it’s all flat, like. This picture has an up.”

“Yeah!” Ben got it. “Cal’s right.”

Dwayne has begun to grasp this. “So you can’t just draw a line? You have to follow along the…things?”

“The axes.” I finish counting along the “bottom” axis and go over to my bookshelf in the furthest corner of my room. “So the sketch starts here…QUIET! One conversation at a time, and I’m the STAR here. The origin starts at this bookshelf. I am walking along the wall, hugging it, on my way to Aditya. Does everyone see how they could track my progress on the axis?”

“YES!” from various points of the room.

“What the hell are you doing?” Dwayne is watching me carefully hug the wall.

“Everyone except Dwayne?”

“YES!” much louder.

I walked along the wall to the table where Aditya sat (fourth along the wall) and stop.

“So now what?”

“You’re there.”

“No, not yet.” countered Nadine. You have to go out….” she waved me towards her. “this way.”

“Yeah, towards Aditya,” this from Talika.

I stepped out 2 steps or so. “That all?”

Josh frowned. “Yeah. You’re there. Except…”

“UP!” Sophie shouted from the back. “That’s the third axis!” General approval reigns loudly, until I wave them all quiet, or try to.

“You go up 4!” Teddy shouted.

“OK. So Aditya is about 40 units out along the wall, 2 units out towards…the door, and 4 units up. Yes?”


“So let’s draw that.”

Of course, while I’m drew this, general mayhem is ongoing with my back turned. I shouted “QUIET! or “Could someone stick a sock in Dwayne?” a few times.

“Wow, so it’s a…cube?”

“A prism, yes. So here’s what we’ve done. We’ve taken the two dimensional x-y coordinate plane and extended it.”

“We extended it up,” from Sophie.

“Yes. And now, instead of a rectangle, we have a three-dimensional rectangular prism. And we can describe things now in three dimensions. But we can do more than that. So let’s step away from my classroom sketch….”


“Whoa. What’s that?” Dylan.

“Man, that’s f***ed up. I just started to get this, and now you’re….” Dwayne, of course.

“No, it’s fine,” Manuel said. “It’s just like the whole thing moved to the center.”

“Oh, I see. It’s like there’s four rooms, all cornered.” Wendell.

“Yes, exactly. Except now, you want to stop thinking about it as a room and think of it as a coordinate plane. As Sophie says, the new plane is the up/down one. So the old x is now here. The old y is now here. The z is the straight up and down one. I think of it as taking the 2 dimensional plane and kind of stepping back and looking down on it.”

“That’s just….”

“DWAYNE BE QUIET. One thing to remember: when you see a 3-dimensional plane, they may be ordered differently. There’s a whole bunch of rules about it that make potentially obscene finger orientations, but I promise I won’t test you on that.”

“So let’s say we’re plotting the point (8,4,5). I’m going to show you how to do it first. Then I’ll go through why. Start by plotting the intercept along each of the planes.”

“Man, does anyone else get this?”

“YES. Shut up, Dylan,” says Natasha.


“The trick to remember when you’re graphing in 3-d is to stay parallel to the axis you’re drawing along. So never cross over the lines when plotting points. Now let’s add the yz and xz planes.

“What? This is weird. Why are you drawing so many rectangles?” Patty, frowning.


“What you have to visualize is that it’s like we’re drawing sides. So far, I’ve drawn,” I look around and grab three of my small whiteboards, “the bottom and two of the sides. Hold this, Natasha, Talika.” and I build the walls. The kids in the back stand up and look over.

“Oh, I see,” Teddy again. “You’re drawing the prism again.”

“Right. It’s just looking different because the axis is in the center.”

“You do all this just to plot one point?” Sophie, ever the skeptic.

“Yes, but remember this is more just to illustrate, to see how you can extend the dimensions. So after you draw the three sides, joining the intercepts for xy, yz, and xz intersections, you extend those out–again, along the lines.”


“So the point we’re graphing is going to be at the vertex, the intersection of the three planes, the furthest point from the origin–just like in two dimensions, the point is at the intersection of the two lines.”

“That’s really complicated.” Wendy sighed.

“No, it’s not” “Don’t you see the…” Ben, Manuel, Teddy, Wendell and others jump in at the same time, while Dwayne bellowed, Wendy and Tess were asking questions of the room, and, as the writer says, pandemonium ensued. It was a shouting match, yes, but they were shouting about math. The Naysayers, the Doubters, and the Apostles were all marking their territory and this was no genteel, elegant, “turn and discuss this with your partner”, no think-pair-share nonsense. This was a scrum, a brawl, a melee conducted across the room with the volume up at 11—but just like any good fight, there was order beneath the chaos, a give and a take at the group level.

And for you gentle souls wondering about the quiet kids, the introverts, the shy ones who need time to think, they were enthralled, watching the game and making up their mind. It may not look like everyone gets time to talk, but pretty much every time you read me call on a kid, it’s a quiet one. And I shush the room. Then the quiet kid sits there in shock as he or she realizes oh god, I’ve got the mike and I can’t be a spectator anymore.

Anyway, the story goes on with a second great moment, but I’m getting better at chunking and this half had too many details I didn’t want to give up. I’ll stop here for dramatic effect. Because oh, lord, I was high as a kite in this moment, watching the room, realizing I was riding a tremendous wave of energy and excitement. Yeah. ME. On Stage. Making Drama.1

Now I just had to come up with a good ending.

1I’m not congratulating myself, saying I’m proving kids with the great moment. No, the great moment is mine. I’m standing there going oh, my god, this is a great moment in teaching, in my life. For me! The kids, hey, if they liked it, that’s good.

Great Moments in Teaching: When Worlds Collide

I’m on vacation! I actually took a whole half day off to add to my spring break, spent a couple days with my grandkids (keep saying the phrase, it will get more real in a decade or three), then embarked on an epic road trip through the northwest. My goal to write more posts is much on my mind–despite my pledge, I’ve only written 10 posts this year. But I’ve gotten better at chunking–in years past, I would have written one “teaching oddness” post, rather than three.

So this new semester, new year, has already seen some teaching moments that are best thought of as crack cocaine, a hit of adrenaline that explodes in the psyche in that moment and every subsequent memory of it, the moments you know that all those feel-good movies about teaching aren’t a complete lie. Not all moments are big; this one would barely be noticed by an outsider.

I was explaining slope to one of my three huge algebra 2 classes, the most boisterous of them. Algebra 2 is tough when half your kids don’t remember or never learned Algebra 1, while the rest think they know all there is to know, which is y=mx+b and the quadratic formula (no understanding of what it means or how to factor). Meanwhile, my recent adventures in tutoring calculus (be sure to check out Ben Orlin’s comment) has increased my determination to improve conceptual understanding among my stronger students, even if my weaker ones get a tad bored.

“I want you to stop just thinking of slope as a number, something you can only get by looking at two points, subtracting y1 from y2, then x1 from x2. The simplest way to start this process is to consider the slope triangle, which I know a lot of you use to find the slope, but don’t really think about.”

“But think of slope as represented by an actual right triangle. The legs represent the relative change rates of the horizontal and vertical (the x and the y). The hypotenuse is the slope. You can see the rate of change. It’s not just a number. Evaluate slopes by their triangles and you can see the ratio in action.”

I’m skipping over some discussion, some give and take. As I drew pictures, I “activated prior knowledge“, elicited responses as to what slope was, what the slope-intercept form represented, etc. But this was pretty close to pure lecture. I can read the audience–they’re not hanging on every word, but they get it, I’m not preaching to snoozers.

“How many of you remember right triangle trigonometry last year, in geometry?” A few hands, mostly my top kids.

“Come on, SOHCATOA?”

“Oh, yeah, that stuff” and most hands go up.

“So when I teach right triangle trig, I do my best to beat into your heads that the trig identities are ratios. Trigonometry is, in fact, the study of the relationship between the ratios of triangle legs and the triangle’s angles.”

“And that means you can think of the slope of a line in terms of its trigonometric ratio. Take a look at the triangle again, but now use your geometry lens instead of algebra.”


“The slope of a line is rise over run in algebra. But in geometry, it’s opposite over adjacent. The slope of a line is identical to the slope triangle’s tangent ratio.”

“Holy SHIT.” Every head turned around to the back of the room (where the top kids sit), where Manuel, a big, rumpled, exceptionally bright sophomore was staring at my board work.

I smiled. Walked all the way to the back of the room, to Manuel’s desk, tapped it lightly. “Thanks. That means a lot.” Walked back all the way to the front.

Remy smiled knowingly. “That was like some sort of smart-people’s joke, right?”

“Naw,” I said. “His worlds just collided.”

I could do a bit more, explain how I followed up, but no. You either get why it’s great, or you don’t.

<mic drop>

Assessing Math Understanding: Max, Homer, and Wesley

This is only tangentially a “math zombies” post, but I did come up with the idea because of the conversation.

I agree with Garelick and Beals that asking kids to “explain math” is most often a waste of time. Templates and diagrams and “flow maps” aren’t going to cut it, either. Assessing understanding is a complicated process that requires several different solutions methods and an interpretive dance. Plus a poster or three. No, not really.

As I mentioned earlier, I don’t usually ask kids to “explain their answer” because too many kids confuse “I wrote some words” with “I explained”. I grade their responses in the spirit given, a few points for effort. “Explain your answer” test questions are sometimes handy to see if top students are just going through the motions, or how much of my efforts have sunk through to the students. But I don’t rely on them much and apart from top students, don’t care much if the kids can’t articulate their thinking.

It’s still important to determine whether kids actually understand the math, and not just because some kids know the algorithm only. Other kids struggle with the algorithm but understand the concepts, Still others don’t understand the algorithm because they don’t grok the concepts. Finally, many kids get overwhelmed or can’t be bothered to work out the problem but will indicate their understanding if they can just read and answer true/false points.

If you are thinking “Good lord, you fail the kids who can’t be bothered or get overwhelmed by the algorithms!” then you do not understand the vast range of abilities many high school teachers face, and you don’t normally read this blog. These are easily remediable shortcomings. I’m not going to cover that ground again.

So how to ascertain understanding without the deadening “explain your answer” or the often insufficient “show your work”?

My task became much easier once I turned to multiple answer assessments. I can design questions that test algorithm knowledge, including interim steps, while also ascertaining conceptual knowledge.

I captured some student test results to illustrate, choosing two students for direct comparison, and one student for additional range. None of these students are my strongest. One of the comparison students, Max, would be doing much better if he were taught by Mr. Singh, a pure lecture & set teacher; the other, Homer, would be struggling to pass. The third, Wesley, would have quit attending class long ago with most other teachers.

To start: a pure factoring problem. The first is Max, the second Homer.


Both students got full credit for the factoring and for identifying all the correct responses. Max at first appears to be the superior math student; his work is neat, precise, efficient. He doesn’t need any factoring aids, doing it all in his head. Homer’s work is sloppier; he makes full use of my trinomial factoring technique. He factored out the 3 much lower on the page (out of sight), and only after I pointed out he’d have an easier time doing that first.

Now two questions that test conceptual knowledge:


Max guessed on the “product of two lines” question entirely, and has no idea how to convert a quadratic in vertex form to standard or factored. Yet he could expand the square in his head, which is why he knew that c=-8. He was unable to relate the questions to the needed algorithms.

Homer aced it. In that same big, slightly childish handwriting, he used the (h,k) parameters to determine the vertex. Then he carefully expanded the vertex form to standard form, which he factored. This after he correctly identified the fact that two lines always multiply to form a quadratic, no matter the orientation.

Here’s more of Homer’s work, although I can’t find (or didn’t take a picture of) Max’s test.


This question tests students’ understanding of the parameters of three forms of the quadratic: standard, vertex, factored. I graded this generously. Students got full credit if they correctly identified just one quadratic by parameter, even if they missed or misidentified another. Kids don’t intuitively think of shapes by their parameter attributes, so I wanted to reward any right answers. Full credit for this question was 18 points. A few kids scored 22 points; another ten scored between 15 and 18. A third got ten or fewer points.

Homer did pretty well. He was clearly guessing at times, but he was logical and consistent in his approach. Max got six points. He got a wrong, got b, c, & d correct, then left the rest blank. It wasn’t time; I pointed out the empty responses during the test, pointing out some common elements as a hint. He still left it blank.

On the same test, I returned to an earlier topic, linear inequalities. I give them a graph with several “true” points. Their task: identify the inequalities that would include all of these solutions.


(Ack: I just realized I flipped the order when building this image. Homer’s is the first.)

Note the typo that you can see both kids have corrected (My test typos are fewer each year, but they still happen.) I just told them to fix it; the kids had to figure out if the “fix” made the boundary true or false. (This question was designed to test their understanding of linear concepts–that is, I didn’t want them plugging in points but rather visualizing or drawing the boundary lines.)

Both Max and Homer aced the question, applying previous knowledge to an unfamiliar question. Max converted the standard form equation to linear form, while Homer just graphed the lines he wasn’t sure of. Homer also went through the effort of testing regions as “true”, as I teach them, while Max just visualized them (and probably would have been made a mistake had I been more aggressive on testing regions).

Here I threw something they should have learned in a previous year, but hadn’t covered in class:

Most students were confused or uncertain; I told them that when in doubt, given a point….and they all chorused “PLUG IT IN.”

This was all Max needed to work the problem correctly. Homer, who had been trying to solve for y, then started plugging it in, but not as fluently as Max. He has a health problem forcing him to leave slightly early for lunch, so didn’t finish. For the next four days, I reminded students in class that they could come in after school or during lunch to finish their tests, if they needed time. Homer didn’t bother.

So despite the fact that Homer had much stronger conceptual understanding of quadratics than Max, and roughly equal fluency in both lines and quadratics, he only got a C+ to Max’s C because Homer doesn’t really care about his grade so long as he’s passing.


I called in both boys for a brief chat.

For Max, I reiterated my concern that he’s not doing as well as he could be. He constantly stares off into space, not paying attention to class discussions. Then he finishes work, often very early, often not using the method discussed in class. It’s fine; he’s not required to use my method, but the fact that he has another method means he has an outside tutor, that he’s tuning me out because “he knows this already”. He rips through practice sheets if he’s familiar with the method, otherwise he zones out, trying to fake it when I stop by. I told him he’s absolutely got the ability to get an A in class, but at this point, he’s at a B and dropping.

Max asked for extra credit. He knew the answer, because he asks me almost weekly. I told him that if he wanted to spend more time improving his grade, he should pay attention in class and ask questions, particularly on tests.

We’ve had this conversation before. He hasn’t changed his behavior. I suspect he’s just going to take his B and hope he gets a different teacher next year who’ll make the tutor worth the trouble. At least he’s not trying to force a failing grade to get to summer school for an easy A.

Homer got yelled at. I expressed (snarled) my disappointment that he wouldn’t make the effort to be excellent, when he was so clearly capable of more. What was he doing that was so important he couldn’t take 20 minutes or so away to finish a test, given the gift of extra time? Homer stood looking a bit abashed. Next test, he came in during lunch to complete his work. And got an A.

Max got a B- on the same test, with no change in behavior.

I haven’t included any of the top students’ work because it’s rather boring; revelations only come with error patterns. But here, in a later test, is an actual “weak student”, who I shall dub Wesley.

Wesley had been forced into Algebra 2, against his wishes, since it took him five attempts to pass algebra I and geometry. He was furious and determined to fail. I told him all he had to do was work and I’d pass him. Didn’t help. I insisted he work. He’d often demand to get a referral instead. Finally, his mother emailed about his grade and I passed on our conversations. I don’t know how, but she convinced him to at least pick up a pencil. And, to Wesley’s astonishment, he actually did start to understand the material. Not all of it, not always.


This systems of equations question (on which many students did poorly) was also previous material. But look at Wesley! He creates a table! Just like I told him to do! It’s almost as if he listened to me!

He originally got the first equation as 20x + 2y = 210 (using table values); when I stopped by and saw his table, I reminded him to use it to find the slope–or, he could remember the tacos and burritos problem, which spurred his memory. You can’t really see the rest of the questions, but he did not get all the selections correct. He circled two correctly, but missed two, including one asking about the slope, which he could have found using his table. He also graphed a parabola almost correctly, above (you can see he’s marked the vertex point but then ignored it for the y-intercept).

He got a 69, a stupendous grade and effort, and actually grinned with amazement when I handed it back.

Clearly, I’m much better at motivating underachieving boys than I am “math zombies”. Unsurprising, since motivating the former is my peculiar expertise going back to my earliest days in test prep, and I’ve only recently had to contend with the latter. However, I’ve successfully reached out and intervened with similar students using this approach, so it’s not a complete failure. I will continue to work on my approach.

None of the boys have anything approaching a coherent, unified understanding of the math involved. In order to give them all credit for what they know and can do, while still challenging my strongest students, I have to test the subject from every angle. Assessing all students, scoring the range of abilities accurately, is difficult work.

As you can see, the challenges I face have little to do with Asperger’s kids who can’t explain what they think or frustrated parents dealing with number lines or boxes of 10. Nor is it anything solved by lectures or complex instruction. My task is complicated. But hell, it’s fun.

Jake’s Guest Lecture

Our well-regarded local junior college is the top destination for my high school’s graduates, a number of whom are more than bright enough to go to a four-year university but lack the money or the immediate desire to do so. Case in point: Jake, my best case for the hope that subsequent generations of Asian immigrants will adopt properly American values towards education, now at the local community college with a 4.0 GPA. He earned it entirely in math classes, having taken every course in the catalog–and nothing else. This from a kid who failed honors Algebra/Trig for not doing homework, and didn’t bother with any honors courses after that.

Jake visits four or five times a year, usually coming during class to see what’s up, working with other students as needed, then staying afterwards to chat. This last week he showed up to my first block trig class, with the surly kids who mouth off. We were in the process of proving the cosine addition formula.

The day before, I started with the question: “cos(a+b) = cos(a) + cos(b)?” and let them chew on this for a bit before I introduce remind them of proof by counterexample. A few test cases leads to the conclusion that no, they are not equal for all cases.

Then we went through this sketch that sets up the premise. I like the unit circle proof, because the right triangle proofs just hurt my head. So here we can see the original angle A, the original angle B, and the angle of the sum. Moreover, the unit circle proof includes a reminder of even and odd functions, a quick refresher as to why we know that cos(-B) = cos(B), but sin(-B) = -sin(b).


Math teachers often forget to point out and explain the seemingly random nature of some common proof steps. For example, proving that a triangle’s degrees sum up to 180 involves adding a parallel line to the top of the triangle and using transversal relationships and the straight angle.

Didn’t I make that sound obvious? You have this triangle, see, and you wonder geewhiz, how many degrees does it have? Hmm. Hey, I know! I’ll draw a parallel line through one vertex point! Who thinks like that? The illustration of a triangle’s 180 degrees is much more compelling than any proof.

So when introducing a proof, I try to make the transition from question to equation….observable. Answering the question requires that we define the question in known terms. What is the objective? How does the diagram and the lines drawn get us further to an answer?

Point 1 in the diagram defines the objective. Points 2 and 4 allow us to represent the same value in known terms–that is, cos(A) and cos(b). And thanks to some geometry that is intuitively obvious even if they’ve forgotten the theorem, we know that the distance between Point 1 and Point 3 [(1,0)] is equal to the distance between Point 2 and Point 4.

So I’d done this all the day before in first block, setting up the equation and doing the proof algebra myself, and the kids were lost. In my second block class, I turned the problem over to the kids at this point.


The solution involves coordinate geometry, algebra, and one Pythagorean identity. No new process, nothing to “discover”. Familiar math, unfamiliar objective. Perfect.

I grouped the second block kids by 5 or 6 instead of the usual 3 or 4 (always roughly by ability), giving each team one distance to simplify (P1P3 or P2P4). Once they were done, they joined up with kids who’d found the other distance, set the two expressions equal and solve for cos(A+B). The group with the strongest kids were tasked with solving the entire equation, no double teaming.

Block Two kids worked enthusiastically and quickly. I decided to retrace steps and do the same activity with block 1 the next day. Which is when Jake—remember Jake? This is a story about Jake—showed up.

“Hey, Jake! You here for the duration? Good. I’m giving you a group.”

Jake got those who had either been absent or were too weak at the math to be comfortable doing the work. I kept a watchful eye on the rest, who tussled with the algebra. I tried not to yell at them for thinking (cos(A) + cos(B))2 = cos(A)2 + cos(B)2, even though they all passed algebra 2 (often in my class), even though I’ve stressed binomial multiplication constantly throughout the year but no, I’m not bitter. Meanwhile, Jake carefully broke down the concept and made sure the other six understood, while they paid much more attention to him than they ever did to me but no, I’m not bitter.

Result: much better understanding of how and why cos(A+B) = cos(A)cos(B) – sin(A)sin(B). One of my most hostile students even thanked me for “making us do the math ourselves” because now, to her great surprise, she grasped how we had proved and thus derived the formula.

And then she went on to ask “But we have calculators now. Do we need to know this?” She looked at me warily, as I’m prone to snarl at this. But I decided to use my helper elf.


Jake, mind you, gave exactly the same answer I would have, but he’s just twenty years old, so they listened as he ran through the process for cosine 75 (degrees. 75 degrees. Jake’s a stickler for niceties.)

“But why is this better?” persisted my skeptic.

“It’s exact,” Jake explained. “Precise. When we use a calculator, it rounds numbers. Besides, who programs computers to make the calculations? You have to know the most accurate method to better understand the math.”

“Class, one thing I’d add to Jake’s answer is that depending on circumstances, you might want to factor the numerator, particularly if you are in the middle of a process.” and I added that in:


“Yeah, that’s right,” Jake confirmed. “like if you were multiplying this, I can think of all sorts of reasons a square root of two might be in the denominator. But other times you need to expand.”

I suddenly had another idea. “Hey. How about if we use right triangles?”

“Like how?”

I sketched out two triangles.

“Oh, good idea. Except you forgot the right triangle mark.”

I sighed. “Class, you see how Jake is insanely nitpicky? Like he’s always making me write in degrees? He’s right. I’m wrong. I’ve told you that before; I’m not a real mathematician and they have conniptions at my sloppiness. But…” I’m struck by an idea. “I don’t need to mark it here! These have to be right triangles. Neener.” (I nonetheless added them in, although I left them off here out of defiance.)


“This is good. So suppose you want to add the two angles here. These right triangles have integer sides, but their angle measures are approximations. Let’s find those values using the inverse.”

Ahmed has his calculator out already. “Angle A is…53 degrees, rounded down. Angle B is 67.38 degrees.”

Me: “Just checking–does everyone understand what Ahhmed did?” I wrote out cos-1(35). “He used the inverse function on the calculator; it’s just a reverse lookup.”

” Let’s keep them rounded to integers. So 53 + 67 is 120 degrees, which has a cosine of ….what?” Jake paused, waiting for a response. Born teacher, he is.

By golly, my efforts on memorization have paid off. Several kids chimed in with “negative one half.”

“Meanwhile, if we multiply all these values using the cosine addition formula…” he worked through the math with the students, “we get -3365“.

Dewayne punched some numbers and snorted. “-0.507692307692. That’s practically the same thing!” .

I had another idea. “You know how I said you should look at things graphically? Let’s graph this out on the unit circle.”


Jake was pleased. “This is excellent. So where would cosine(A+B) show up? We need to find the sine of each to plot it on the circle.” We worked through that and I entered the points.

Isaac: “Yeah, Dewayne is right. The two points are the same on the graph!”

“But this is a unit circle,” Jake said. “Just a single unit. As the values get bigger….I wish we could show it on this graph. Could we make a bigger circle? Or that probably wouldn’t scale.”

“How about if we just show all the values for every x? We could plot the line through that point? From the origin?”

“What would the slope be?” Gianna asked.

“Yeah, what would the slope be? Rise over run. And in the unit circle, the rise is sine, the run is cosine, so…”

“Tangent!” everyone chorused.

Jake was impressed. “See, this is why I should have taken trigonometry. I never thought about that.”

“OK, so I’m going to graph two lines. One’s slope is the tangent of 120, the other’s is the tan(cos-1(-3365))), which is just using the inverse to find the degree measure and taking the tangent in one step. Shazam.”


We then looked more closely at different points on the graph and agreed that yes, this piddling difference became visible over time.

“So the lines show how far apart the points would be for 120 and the addition formula number if you made the circle to that radius?” Katie asked.

“Yep. And that’s just what we can see,” Jake added. “The difference matters long before that point.”

When second block started, after brunch, Abdul rushed in, “Ahmed said we had a genius guest lecturer? Where is he?”

I faced a cranky crowd when I told them the genius had to go to class, so Jake will have to come back sometime soon.


Two months ago, Jake stopped by for a chat and I asked him about his transfer plans.

“Oh, I don’t know. Four year universities, I’ll have to take other classes, instead of what interests me.”

“You can’t be serious.”

“Well, maybe in a few years. But I have to wait a while for the computer programming classes I need to take, and the math classes are more fun.”

“Computer programming?”

“Yeah. That’s what I want to….what. Why are you laughing.”

“Do you know anything about computers?”

“No, but it’s a good field, right?”

“I think you’re one of the most gifted math students I’ve bumped into, and you’ve never shown the slightest interest in technology or programming.”

Jake sat up. “My professor told me that, too. He said I should think about applied math. Is that what you mean?”

“Eventually, probably, but let’s go back to why the hell you don’t have a transfer plan.”

“Well, should I go to [name of a local decent state university]?”

I brought up his school website, keyed in “transfer to [name of elite state university system]”.

Jake looked on. “Wait. There’s a procedure to apply to [schools much better than local decent state university]?”

“You will go to your counselor, tell her or him you want to put together a transfer plan. Report back to me with the results in no less than 2 weeks. Is that clear?”

“OK,” meekly.

Just five days later, Jake’s cousin, Joey, my best algebra 2 student, reported that Jake had a transfer plan started and was getting the paperwork ready.

So after this class, I asked him about transfer plans.

“Oh, yeah. I’m scheduled to transfer to [extremely elite public university] in fall of 2017. I’ve been taking all math classes, so I have a bunch of GE to take. But it’s all in place.” He grinned wryly. “I didn’t think I’d be eligible for a school that good.”

“And that’s just the guarantee, right?”

“Yes, I want to look at [another very highly regarded public]. Do you think that’s a good idea?”

“I do. You should also apply to a few private universities, just for the experience. It’s worth learning if they give transfer students money.” I named a few possibilities. “And ask your professors, too.”

“Okay. And you don’t think I should major in computer programming?”

“Do you know anything about programming right now? If not, why commit?”

“I don’t know. I never knew about applied math possibilities. It sounds interesting.”

“Or pure math, even. So you’ve got some research to do, right? And keep your GPA excellent with all that GE.”


“And at some point, you’re going to think wow, I never would have done any of this without my teacher’s fabulous support and advice.”

“I already think that. Really. Thanks.”

Just in case you think his visits pay dividends in only one direction.